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Abstract

Most current techniques for minutiae extraction in
fingerprint images utilize complex preprocessing and
postprocessing. In this paper, we propose a new
technique, based on the use of learned templates, which
statistically characterize the minutiae. Templates are
learned from examples by optimizing a criterion
function using Lagrange’s method. To detect the
presence of minutiae in test images, templates are
applied with appropriate orientations to the binary
image only at selected potential minutia locations.
Several performance measures, which evaluate the
quality and quantity of extracted features and their
impact on identification, are used to evaluate the
significance of learned templates. The performance of
the proposed approach is evaluated on two sets of
fingerprint images: one is collected by an optical
scanner and the other one is chosen from NIST special
fingerprint database 4. The experimental results show
that learned templates can improve both the features
and the performance of the identification system.

1 Introduction

In most automatic fingerprint identification systems,
minutiae, including endpoints and bifurcations, are
commonly used as features. However, reliable minutiae
extraction in fingerprint images is still a difficult
problem. This problem is complicated by the fact that
fingerprint images can be substantially distorted due to
noise, scars and undesired artifacts.

A minutiae extraction approach generally consists of
three steps: preprocessing, feature extraction and
postprocessing. Preprocessing techniques attempt to
utilize the nature of fingerprint images for image
filtering, which is adaptive to local orientation and local
frequency [1,2,3]. Feature extraction is based on either
binarization, thinning and minutiae detection, or a ridge
following approach in either binary or gray scale images
[4,5]. The approaches based on binarization, thinning
and minutiaedetection are simple in principle, and some
of the algorithms, like thinning, can be implemented in
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parallel. However, they tend to perform poorly in noisy
and low contrast images. In comparison, ridge following
approaches have the advantage that they can perform
better on noisy and low contrast images. However, the
algorithms are generally complex and nonadaptive.
Postprocessing  techniques  attempt to  rectify
imperfections of the feature extraction by utilizing
model information such as minimum ridge length and
the duality between ridges and valleys. Table 1 shows
some techniques for minutiae purification. Generally,
these algorithms are complex and heavily depend on the
experimental parameters.

A minutiae extraction algorithm has been proposed
{6] which uses fixed templates. The assumptions in using
fixed templates are: a) ridge width is constant in a
fingerprint image; b) minutiae are not located in an area
where the local orientation changes rapidly. However, in
reality, ridge width is not always constant, and local
orientation changes rapidly in certain areas, such as
around the delta and core points. Motivated to develop a
distortion tolerant approach that can deal with these
problems and be computationally efficient, in this paper
we present a template based approach for minutiae
extraction, which is based on learning templates by
Lagrange’s method. The key contributions of this paper
are the development of a new technique for learning
templates for endpoints and bifurcations from examples
and applying them adaptively to extract minutiae in
fingerprints. The results are evaluated using several
measures on two different datasets to demonstrate the
efficacy of the technique.

2 Learned minutiae extraction

Figure 1 shows the block diagram of our system.
First, the background (area with no information) in the
fingerprint image is removed. Local orientation is
computed in each local block and the fingerprint is
adaptively smoothed according to the local orientation.
Then, the fingerprint is adaptively binarized and thinned.
Potential minutiae are found using Crossing Number
(CN). Finally, learned templates are adaptively applied
to purify the potential minutiae.



Table 1. Techniques for minutiae purification.

System ProcessinL Approach Evaluation Comments
Xiaoet al. , Postprocessing to . o . I 8 algorithms to filter
t e
1991, [7] purify minutiae Statistical criteria Reduction of false minutiae false minutiae
Sherlock et al. , Pregrocess::lgt f(;r Directional # of missed minutiae and Results were checked
1994, [2] enhancement o Fourier filtering false minutiae on only 14 images
gray-scale image
Hong etal. , Preprocessing for Gal_:or filter Goodness Index and Cor.nputatlonally
enhancement of adaptive to local . . expensive and too many
1998, (1] . . . verification performance
gray-scale image orientation parameters
Farina et al., Postproce'ssm’g to Knowloidgé based Visual check 9 algomhn'ls t(? filter
1999, [8] purify minutiae criteria false minutiae
Luoetal., Postprocssing to Knowledge based Too many rules and
. L e N/A
2000, [9] purify minutiae criteria parameters
. Apply templates to | Learned templates Goodness.Valu‘e, RO.C curve
This paper S o and identification
filter minutiae based on criteria
performance
Fingerprint image templates are to be learned, one for each-kind of feature.
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Figure 1. System for minutiae extraction.
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Figure 2. lilustration of an ideal endpoint template T.

2.1 Off-line learning of templates

¢ Template learning problem: A template is a 2D
filter that is concerned with detecting a minutia. Since a
minutia can be an endpoint or a bifurcation, two
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For simplicity, we use endpoints as the example to
explain our learning approach. The template for
bifurcations can be learned by following a similar
processing.

Figure 2 shows an ideal endpoint template T that
consists of two sub-templates, 7, (length L) and T,
(length L), which denote the template for ridge and gap,
respectively. For simplicity, we assume L, = L, . H and
L are the height and the length of the template T, and L
=L, + L, . The value of each pixel in T, and T, are 1 and
0, respectively.

Suppose a) aridge end E in a binary image is as ideal
as the ideal template T; b) the local orientation at the
ridge end is 6, ; c) the correlations between the template
T and the ideal ridge end E with the orientation 6, and 6,
+ 7 are fp, and fg,, , respectively; and d) the difference
between fg and fg, - is Ag , then

A, = fo Sopen 1)

The correlation between a template T and a ridge end
E with the orientation 8, is defined by:

£, = S{ tpxE,(mD } @

(hDe(T NEy,)

where Egfh, |) is the ridge with orientation 6, and the
template is applied along the ridge.

Under real-world conditions, the ridge end in a
fingerprint image is not ideal, so that the weight of each
pixel in the template cannot be measured by 1 or 0
alone. The problem of learning templates for minutiae
extraction is described as: given examples of endpoints
and bifurcations, how to learn the templates that can be
applied to minutiae extraction to avoid the complex
postprocessing?



e Training data: Suppose a) the examples of
endpoints and bifurcations are obtained from M
fingerprint images FI, , where k = 1,2,3...M; b) in the
kth fingerprint image FI, , there are N, feature locations
(., ¥..)» where i = 1,2,3...N,; c) in the local area around
(x> Yu.)» I,(m, n) is the gray scale value at pixel (m, n)
of the image FI,, where x,, ~d, <m <x,+d,,y,,-d, <
n <y, +d,, d, and d, are constants; and d) G = {(x,,,
¥/} For each pixel in G, .we do the following steps: a)
estimate the local orientation 6,, at pixel (x,; , y,,) in the
local area; b) adaptively smooth 1, (m, n) in the local
area; c) adaptively binarize I, (m, n) in the local area.

e Optimzation for templates learning: Suppose a)
the template is T(h, /), where ] <h <H,1 <!<L,and H
=2d, + 1 and L = 2d, + I; b) B, (h, 1) is the binary
image of I, (m, n); and c) B* (h, ) is the rotated binary
image of B, (h, 1), rotation angle is 6, , which is the
local orientation at pixel (x,, , y,). According to
equations (1) and (2), the objective of the learning
algorithm can be defined as:

argmax{ SIS0 10 x 0, ] }(3>
T

k=1 i=1 k=1 I=t
where

O, (D = Bl - B%uhL-1) &
If we normalize the template so that its energy is 1,

H

ZiTz(h,l) =1 ®)

h=1 I=1

Then, we can solve the optimization problem with
Lagrange’s method. Let

M N
bl = Y30, (hD) (6)

k=1 i=l
H L H L
r = 2 2[thhxemb] + A[ZZT’(M) - 1] m
. h=1 i=} h=1 i=1

Then, we have

oy :
Y - gl 2AXT(h,1 8
ST q(hly + 2AxT(hD) ®)
Let v 5
oy 9
oT(h,1) 0 ©)
Then, the solution of equation (7) is,
H L N
=224 kD) (10)
A’ = h=] I=1
2
And ' b = q(h, 1)

Lo, an

2.2 Run time feature extraction: As shown in
Figure 1, the proposed approach consists of six steps:
background removal, compute local orientation,
adaptively smooth image, adaptively binarize and thin
image, find potential minutiae and minutiae extraction
by adaptively applying templates. The detail of these
steps can be found in [6].

p

Figure 4. Typical images in dataset 2.

3 Experiments

31 Database: Two sets of fingerprint images are
used in our experiments. Dataset 1 consists of 400 pairs
of images. These images are collected from 100 persons



under real-world conditions by a commercially available
optical fingerprint sensor (FIU-500-FO1) with the
resolution of 300 DPL. The size of these images is
248x120 pixels. We subjectively classify the 400 pairs
of images according to their quality into three classes:
good, fair and poor. The quality of each pair of images
is determined visually based on the following criteria:
contrast between ridges and valleys, ridges’ continuity
and width, distance between ridges, the number of scars,
translation, rotation and scale between images. Some
typical images from each class are shown in Figure 3.
Note that the composition of dataset 1 for good, fair,
and poor quality images are 19.0%, 33.2%, and 47.8%,
respectively. Dataset 2 contains 400 pairs of images
chosen from NIST special fingerprint database 4 (NIST-
4) [10]. NIST-4 is a difficult fingerprint database in
which fingerprint images are captured by an ink based
method and they are not of good quality. We choose
400 pairs of images from the first 1000 pairs of images
in NIST-4. These images are chosen visually based on
the size of overlapped areas between two images, the
number of scars, translation, rotation and scale between
images. The size of these images is 480x512 pixels with
the resolution of 500 DPL. Some typical images in
NIST-4 that we use are shown in Figure 4.

(b) dataset 2

Figure 5. Learned templates: endpoint
(left) and bifurcation (right).

3.2 Learned templates: The training data is
randomly and manually obtained from 30 fingerprint
images in both datasets based on the quality and the
location of the minutiae. There are 92 endpoints and 83
bifurcations for dataset 1, and 85 endpoints and 86
bifurcations for dataset 2. The templates for endpoint
and bifurcation are learned from these training data by
the procedure described in Section 2. Figure 5 shows the
learned templates, which are used to extract minutiae,
for each dataset. The size of the templates are 11x17 and
17x33 for two datasets, respectively. Note that, in order
to show the structure of the templates clearly, the
templates are normalized such that the minimum and
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maximum values map to black (0) and white (1),
respectively.

3.3 Evaluation of experimental results:
Figure 6 shows an example of minutiae extraction for
each class in dataset 1 and two examples for dataset 2.
The minutiae in black areas on the border of images in
dataset 1 are ignored since in these areas the error in
estimating local orientation is large.

e Evaluation using the number of extracted
features: Suppose M, = {e;, i = 1,2,3...n} is the set of n
minutiae extracted by a feature extraction algorithm and
M, = {g;, j = 1,2,3..m} is the set of m minutiae
extracted by an expert in a fingerprint. We define the
following terms: a) Matched minutiae: if minutia e; is
located in an uncertainty region centered around minutia
8j » €; and g; are matched minutiae; b) Occluded minutia:
if minutia g; is not in an uncertainty region of any
minutia ¢; , then g; is an occluded minutia; c) Clutter
minutia: if ¢; is not in an uncertainty region of any
minutia g; , then ¢; is a clutter minutia. In our
experiments, the size of the uncertainty region is 4x4
and 8x8 for dataset 1 and dataset 2, respectively. The
Goodness Value (GV) of extracted feature is defined as:

GV = — " (12)
n, +n,+n,
where n, , n, and n_ are the number of matched,
occluded and clutter minutiae, respectively.
Figure 7 shows the Goodness Value of five images
in each class of dataset 1 and fifteen images in dataset 2.
From these figures, we find that the learned templates
work better than the fixed templates described in [6].
For example, in dataset 2, the mean of GV on these
fifteen images is 0.66 for the learned templates, and
0.57 for the fixed templates, which amounts to an
improvement of 15.7%.

o Evaluation using ROC curve: By varying the
decision threshold, we obtain a form of Receiver
Operating Characteristic (ROC) curve with probability
of correct feature extraction P_ vs. probability of false
alarm P, where P, and P, are defined as:

P_= P{decide true minutia ! the potential minutia is a true

minutia},

P, = P{decide true minutia | the potential minutia is not a

true minutia}

(13)

Figure 8 shows the ROC curve on both datasets
using the learned templates. We find that the learned
templates are more effective on endpoint extraction than
bifurcation.



(a) dataset 1 (good, fair and poor quality)

o

(b) dataset 2

Figure 6. Examples of minutiae extraction ([J: endpoint, x: birfucation).
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Figure 7. Goodness Value in each class on
dataset 1 and on dataset 2.
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Figure 8. ROC curve of experiment results.
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o Evaluation by identification performance: An
indexing algorithm for recognition of fingerprints is
presented in [11]. The outputs of the indexing algorithm
are the top N hypotheses which is different from the
single output of a conventional verification system.
Generally, False Accept Rate (FAR) and False Reject
Rate (FRR) are used to evaluate the performance of a
verification algorithm. Since the output of the indexing
algorithm are the top N hypotheses, FAR and FRR are
not suitable for evaluating the results of an indexing
algorithm. A test image, which has a corresponding
image in the database, is said to be correctly indexed if
it has enough corresponding entities in the model
database and the correct corresponding image appears in
a shortlist of hypotheses obtained by the indexing
approach. Thus, the Correct Index Power (CIP) is
defined as:

cp = Neaxio0m (14)
N,

where N, is the number of correctly indexed images, N,

is the number of images in the database, and all images

in the database are tested once by the corresponding test

images.

Figure 9 and 10 show the comparison of the CIP for
fixed and learned templates on dataset 1 and dataset 2,
respectively. We observe that the performance of the
learned templates is always better than that of the fixed
templates. For dataset 1, the CIP is improved by 1.2%,
5.6%, and 4.6% for the top one hypothesis for good,
fair, and poor classes, respectively. For the entire dataset
1, the CIP is improved by 4.3%. For dataset 2, the CIP
for the top one hypothesis increases by 2.8%, and by
6.5% and 5.2% when we consider the top five and top
ten hypotheses, respectively. Using the fixed templates,
the CIP reaches 100% only when we consider the top
twenty-six hypotheses. While for learned templates, we
only need to consider top ten hypotheses. There is a
difference in results on the two datasets. This is because
for dataset 1 the scanner constraints the range of the
distortions, while for dataset 2 there are no such
constrains. And for dataset 2, since fingerprint images
are collected by ink, the distortions created by blurred
areas are much more than that in dataset 1.

4 Conclusions

We have proposed a new and effective fingerprint
minutiae extraction algorithm which is based on using
learned templates. Using this algorithm, we can avoid
the complex preprocessing and postprocessing
algorithms which are necessary in most minutiae
extraction algorithms. The performance of the algorithm
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is evaluated by the Goodness Value on typical images,
ROC curve on two datasets, and the performance of
indexing of an identification system. Experimental
results show that our minutiae extraction algorithm is
capable of improving both the Goodness Value and the
performance of the identification system.
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